If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-15k+28=0
a = 2; b = -15; c = +28;
Δ = b2-4ac
Δ = -152-4·2·28
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-1}{2*2}=\frac{14}{4} =3+1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+1}{2*2}=\frac{16}{4} =4 $
| 12y*6=22 | | 1.5x^2+x-4.6=0 | | 4.5x^2+x-100=0 | | P=-3q+6 | | 5x+36=171 | | -118=-8/9m+10 | | 3x^2+x-5.29=0 | | 105-y=172 | | 4p+-1=11 | | 1/4p=1/9 | | x-0.08x=10 | | 4.5x^2+x-7.83=0 | | ∣x+7∣=4 | | 1.5x^2+x-100=0 | | ∣x+7∣∣x+7∣=4 | | 7x+4-2x=3x | | X=5+0.08x | | 12x-8=5x+1 | | X-0.08x=5 | | 18-x2=11 | | O.8n=0.56 | | x/11=22 | | -4(5y-5)-y=4(y-2) | | 76=20-9x | | 36=4y+20 | | 1311+311y=111+114y | | 13/11+3/11y=1/11+11/4y | | 19+5x=64 | | 64=19+5x | | 3y-3=72 | | 15=4+y | | 27=63-6x |